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A robust high-order algorithm is proposed to solve steady Euler equations on unstructured
grids. The main ingredients of the algorithm include a standard Newton method as the
outer iterative scheme and a linear multigrid method as the inner iterative scheme with
the block lower-upper symmetric Gauss–Seidel (LU-SGS) iteration as its smoother. The
Jacobian matrix of the Newton-iteration is regularized by the local residual, instead of
using the commonly adopted time-stepping relaxation technique based on the local CFL
number. The local Jacobian matrix of the numerical fluxes are computed using the numer-
ical differentiation, which can significantly simplify the implementations by comparing
with the manually derived approximate derivatives. The approximate polynomial of solu-
tion on each cell is reconstructed by using the values on centroid of the cell, and limited by
the WENO hierarchical limiting strategy proposed by Xu et al. [Z.L. Xu, Y.J. Liu, C.W. Shu,
Hierarchical reconstruction for discontinuous galerkin methods on unstructured grids with
a WENO-type linear reconstruction and partial neighboring cells, Journal of Computational
Physics 228 (2009) 2194–2212]. It is found that the proposed algorithm is insensitive to
the parameters used. More precisely, in our computations, only one set of the parameters
(namely, the proportional constant a for the local residual, the relaxation parameter s in
the Newton-iteration, the weight l in the WENO scheme and the number of smoothing
steps in the multigrid solver) is employed for various geometrical configurations and
free-stream configurations. The high-order and robustness of our algorithm are illustrated
by considering two-dimensional airfoil problems with different geometrical configurations
and different free-stream configurations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

One of the major research areas of computational aerodynamics is the numerical simulation of the complex flow field
with practical configurations. Many numerical methodologies have been developed for the simulations based on the finite
difference method, the finite volume method and the finite element method. All these methods can be used to discretize the
Euler or the Navier–Stokes equations, which may result in highly nonlinear algebraic systems. Developing robust and effi-
cient solvers for the nonlinear systems is a main challenge in the numerical simulation. Many recent solvers have been
developed to enhance the numerical efficiency, see, e.g. [6,30,41,22] and reference therein. These solvers have used some
modern numerical techniques, including multigrid acceleration [2,7,8,18], post-residual smoothing [14,15,20] and enthalpy
damping [17]. With these acceleration techniques, the nonlinear systems can be solved with several multigrid iterations (a
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few seconds) to machine accuracy. An overview of these techniques can be found in [29]. However, most of known solvers
have only second-order accuracy, while the experience on the structured grids suggests that higher-order accurate approx-
imations can significantly improve the quality of numerical solutions [3]. Recently many efforts have been made for devel-
oping high-order methods on the unstructured grids.

On unstructured grids, the situation is more complex than that on the structured grids. In spite of this, many high-order
methods have been presented on unstructured grids. Barth [3] developed the concept of k-exact reconstruction scheme for
the median-dual finite volume scheme. Such technique was extended to the cell-centered finite volume scheme by Mitchell
and Walters [32]. Based on the idea of selecting the locally smoothest stencil, ENO/WENO schemes [21,25,35] are proposed
for the hyperbolic system of conservation laws. Recently, discontinuous Galerkin (DG) schemes [11] and spectral volume
(SV) methods [36,40] have been developed; both employ the information inside the control volume. All these numerical
schemes demonstrated excellent high-order behaviors.

In this paper, we present a robust high-order numerical algorithm for two-dimensional steady Euler equations on
unstructured grids, based on the work done by Li et al. [24]. In [24], only linear reconstruction is used, so the numerical solu-
tion has just second-order accuracy (for smooth solutions). To obtain higher order numerical accuracy, we extend the recon-
struction to the quadratic case, and use hierarchical reconstruction strategy of [27,26,42] to avoid the non-physical
oscillations. The idea of hierarchical reconstruction is simple. After the initial reconstruction, the information on the centroid
of each cell such as the function values, gradients and second-order derivatives is known. What the hierarchical reconstruc-
tion does is to recompute all the information level by level from the highest order terms to the lowest order terms, with cer-
tain non-oscillatory method. For the quadratic reconstruction which gives a quadratic polynomial in each cell, for example,
coefficients of second-order terms are recomputed using constant term and gradients in different reconstruction patch, and
several candidates for these coefficients are generated. Then the MUSCL scheme or ENO/WENO schemes are used to deter-
mine the limited coefficients for the second-order terms. For the linear terms, a similar way is used to generate limited coef-
ficients with constant term and the updated second-order terms of the polynomial. In this paper, we adopt the WENO type
hierarchical reconstruction to limit the approximate polynomial in each cell. The numerical results in the final section show
that such limiting strategy works very well: the high-order numerical accuracy is kept in the smooth region, and at the mean
time, the spurious oscillations nearby the shock region are removed or reduced significantly.

Different from the standard k-exact reconstruction which the approximate polynomial on each cell are generated based
on cell averages, the approximate polynomial in this paper is given based on the functional value on the centroid of each cell.
Then the polynomial is used directly to describe the steady-state of Euler equations in an integrated form. In fact, the scheme
proposed in this paper fall into the category of the so-called Residual Distribution schemes, which have been extensively dis-
cussed in the literature [12,1,10]. Residual distribution schemes start with point values of the solution, then an interpolation
to obtain a polynomial approximation of the solution, then an approximation of the residual resulting from an integrated
version of the steady-state PDE (which, by the divergence theorem, involves only integrals of the flux along the cell bound-
aries), then a pseudo-time or another method to compute the resulting nonlinear system. The scheme in this paper differs
from traditional residual distribution schemes only in the last step, namely the nonlinear system is solved directly by the
Newton type method rather than through residual distribution and pseudo-time marching. We point out that our algorithm
has almost the same efficiency as finite volume schemes on the unstructured mesh case, since for both schemes, a least
square system (5 � 5 for our scheme and 6 � 6 for finite volume schemes) is solved in every cell in each Newton-iteration
step.

The numerical algorithm to be presented in this paper is as follows. On unstructured grids, we first discretize the steady
Euler equations to obtain the nonlinear algebraic system using residual distribution schemes, which is then linearized by
using the standard Newton-iterations. In the steady case, this algebraic system is actually singular without the time evolu-
tion term and require to be regularized. In the standard methods, the system is regularized by adding a local artificial time
relaxation. In our algorithm we use the term akRHSk1 to regularize the system instead of using the artificial time relaxation,
where RHS is the residual of the linearized system on each cell, and a is a positive constant.

Since the Newton-iteration is employed to linearize the system, we may need the differential forms for the flux to obtain
the local Jacobian matrix. Note that the flux itself may be very complex, such as HLLC [37], CUPS [19], etc., so it is difficult to
obtain the differential forms of these fluxes and to use them correctly in the implementations. In this paper, we use numer-
ical differentiation rather than the exact formulas. From our numerical experience, the numerical differentiation can simplify
the implementation significantly. We just use the exact forms of the flux and one simple C++ function to get the desired re-
sults. In the last section, a number of numerical experiments demonstrate the reliability of the numerical differentiation
method.

The resulting regularized linear system for the Newton-iteration is solved by a linear multigrid method in which the block
LU-SGS proposed by Wang [38] is utilized as the smoother. In implementing the multigrid methods, a sequence of coarse
meshes is generated following the idea of [6]. The coarse meshes are generated to construct the projection operator from
fine mesh to coarse mesh, applied on the sparse matrix and the right hand side of the regularized linear system. The standard
V-cycle type multigrid iteration is used in our implementation.

The rest of this paper is organized as follows. In the next section, the numerical discretization for the Euler equations will
be described. In Sections 3 and 4, the high-order reconstruction technique and the limiting strategy will be introduced. Then
the Newton-iteration and the multigrid method for solving the corresponding nonlinear system will be discussed in Sections
5 and 6, respectively. Numerical experiments will be carried out in Section 7.
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2. Numerical discretization for the Euler equations

The compressible inviscid Euler equations can be written as
@U
@t
þr � FðUÞ ¼ 0; ð1Þ
where U is the vectors of the conservative variables and F is the inviscid flux. We consider the ideal flows with U and F de-
fined as
U ¼

q
qu

qv
E

26664
37775; FðUÞ ¼

qu qv
qu2 þ p quv
quv qv2 þ p

uðEþ pÞ vðEþ pÞ

26664
37775; ð2Þ
where q is the density, u ¼ ðu;vÞ is the velocity, p is the pressure, and E is the total energy. Finally we close the system by
using the equation of state
E ¼ p
c� 1

þ 1
2
qðu2 þ v2Þ;
where c ¼ 1:4 is the ratio of specific heats for air.
For stationary solutions, we actually solve Eq. (1) without the time evolving term, namely
r � FðUÞ ¼ 0: ð3Þ
In this paper, we solve (3) in domain X :¼ R2 �Xc , where Xc denotes the domain occupied by the airfoil, which is the body of
the aircraft in the two-dimensional case. Since the problem domain is unbounded, the commonly used strategy is to solve
the problem in the domain �X :¼ X

T
fjxj < Rg and adopt the far field vortex correction technique to remedy the error intro-

duced by the abrupt domain truncation.
We choose cell-centered scheme to discretize the continuous equation. Let T be a triangular partition of �X, and K 2 T be

one cell in the partition. We assume the intersection of two different cells can only be either an edge or a vertex. Let nij de-
note the outer unit normal on the edge eij, pointing from Ki to Kj. Applying the Gauss’s formula to (3) gives
I

@Ki

FðUÞ � ndl ¼ 0; ð4Þ
where n is the unit out normal of @Ki. By introducing the numerical flux, (4) can be approximated as
I
@Ki

FðUÞ � ndl �
X

eij2@Ki

Z
eij

FðUi;UjÞ � nijdl ¼ 0; ð5Þ
where FðUi;UjÞ denotes the numerical flux. In numerical simulations, HLLC flux [5] is used.
In order to achieve high-order accuracy, we need to reconstruct a high order polynomial on each cell to describe the var-

iation of solution. There are already many papers about the high-order reconstruction, the classical one is the k-exact recon-
struction given by Barth [3]. In next section, we use the similar least square method to reconstruct the polynomial, and limit
it by using the WENO hierarchical reconstruction method.

3. High order reconstruction

In this paper, we use the quadratic reconstruction as an example to describe the procedure of reconstruction. Note that
the reconstruction is performed on the primitive variables.

Expanding the solution eU at the centroid of control volume K by using Taylor expansion, and truncating after the qua-
dratic term, we get the following approximate polynomial solution:
hqðx; yÞ ¼ a0 þ a1ðx� x0Þ þ a2ðy� y0Þ þ
1
2

a3ðx� x0Þ2 þ a4ðx� x0Þðy� y0Þ þ
1
2

a5ðy� y0Þ
2
: ð6Þ
Note that a0 ¼ eUðx0; y0Þ is the function value at the centroid of cell, our goal is to find out a1 ¼ eUxðx0; y0Þ; a2 ¼ eUyðx0; y0Þ;
a3 ¼ eUxxðx0; y0Þ; a4 ¼ eUxyðx0; y0Þ and a5 ¼ eUyyðx0; y0Þ.

The method we used for obtaining above unknowns is the least square method. The detail is as the follows. First, we
choose the reconstruction patch for each cell. In this paper, we emphasize on the difference between linear reconstruction
and the quadratic reconstruction, and follow [34] to give the linear and quadratic patch, respectively, with a modification to
the quadratic case. For the linear case, we use the following criterion to choose the reconstruction patch: for certain cell K,
any cell which has one common edge with K is selected as one component of the patch PlðKÞ. Fig. 1 (left one) gives an illus-
tration of PlðKÞ. For the quadratic case, we need more cells in the reconstruction patch, so the following criterion is used: any
cell which has at least one common vertex with K is selected as one component of the patch PqðKÞ. Fig. 1 (right one) gives an



Fig. 1. The reconstruction patches PðKÞ used for the least square reconstruction. Left: linear case. Right: quadratic case.
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illustration of PqðKÞ. In the numerical experiments, the criterion for quadratic case can always give enough cells (at least 6
cells for quadratic case) in the patch of each cell, even for cells nearby the boundary. However, the criterion for linear case
works not well for the cell which is adjacent to the boundary, say the boundary cell just has two neighbors. To enlarge the
reconstruction patch for boundary cells, the criterion for quadratic case is adopted for such cells.

We obtain the unknowns a1; a2; a3; a4 and a5 by solving the following minimization problem:
min
a1 ;a2 ;a3 ;a4 ;a5

X
8Kl2PqðKÞ

a0;l � a0 � a1x0l � a2y0l �
1
2

a3x2
0l � a4x0ly0l �

1
2

a5y2
0l

���� ����2

2
; ð7Þ
where a0;l means the solution value of at the centroid ðxl; ylÞ 2 Kl, and x0l ¼ xl � x0; y0l ¼ yl � y0.
For the smooth solution, we can use the above approximate polynomial directly to calculate the numerical flux. But for

the solution with discontinuity, if we do nothing to the polynomial, the numerical scheme will introduce non-physical oscil-
lations nearby the discontinuity region. So we need to limit the polynomial in order to improve the behavior of numerical
scheme. In the linear case, many good limiters have been proposed. But for higher order schemes, it seems not easy to give a
limiting strategy which can cancel the spurious oscillations and also keep the high-order accuracy. In [13], two different lim-
iter functions are designed for the linear and quadratic terms, respectively, and satisfactory numerical results are obtained.
Recently, Liu et al. presented a series of papers [26,27,42] to describe a new strategy, called hierarchical reconstruction, to
limit high-order polynomials. The hierarchical reconstruction limits each term of the polynomial in a unified way, while
makes the implementation easier. In the next section, we will introduce a method to limit (6) following the idea of the hier-
archical reconstruction.

Besides the high-order reconstruction, the proper approximation of the curved boundary is also a critical issue for keeping
high-order numerical accuracy. For the linear reconstruction, the polygon is used to approximate the computational domain.
For the quadratic reconstruction or higher order reconstruction, such crude approximation is not usable anymore. In [4], Bas-
si and Rebay used the standard second-order geometric transformation for the curved boundary element. Total six nodes
(three vertexes and three midpoints of edges) are used to determine the quadratic transformation. Since there is just one
curved edge in each cell adjacent to the boundary, Wang and Liu [39] gave a simpler approach. For example, only four nodes
(three vertexes and the midpoint of the curved edge) are required to determine uniquely a quadratic transformation. Re-
cently, Luo et al. [28] just adjusted the outer normal direction of quadrature point on the curved boundary to get the desired
numerical accuracy.

It is noted that the method used in [28] is much simpler than others: no geometric transformation is needed, and just the
outer normal directions of quadrature points on the boundary are adjusted. We adopt this strategy in the experiments. Note
that the Gauss integral formula is not used for the line integral along the curved boundary; instead the Simpson formula is
used with the quadrature points of the two vertices and the midpoint of the edge. With these three quadrature points, third-
order accuracy can be kept, which is sufficient for the quadratic reconstruction. With the Simpson formula, only one point
value (the midpoint of the edge) needs to be found out. With the Simpson formula, the stable convergence order is obtained
in the numerical experiment.

For the edge not on the boundary, we use the two-point Gauss integral formula for both the linear and quadratic
cases.
4. The WENO hierarchical limiting strategy

In the hierarchical limiting strategy, several candidates for certain term in the polynomial will be generated. In [26,27],
the non-oscillatory MUSCL method or second-order ENO method is adopted to determine the last term from these candi-
dates. Since the inherent non-differentiability of the ENO schemes, convergence of the solution to steady-state is impossible
[31]. In this paper, we focus on the steady-state of the Euler equations, so we follow [42] where the WENO method is used in
the hierarchical limiting strategy, to limit (6).
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For each cell K, the information on the centroid of the cell including the functional value (a0 in (6)), gradients (a1 and a2 in
(6)), second order derivatives (a3; a4 and a5 in (6)) is known. The idea of hierarchical limiting method is to recompute these
quantities level by level from the highest order to the lowest order. We recompute the second-order information first for
each cell in the computational domain.

For each cell Ki 2 Pq, the following minimization problem is solve
Table 1
L2 error

No. o

64
256
1024
4096
16,3
65,5
min
~a3 ;~a4 ;~a5

X
8Kl2PqðKÞ;l–i

a0;l � a0 � a1x0l � a2y0l �
1
2

~a3x2
0l � ~a4x0ly0l �

1
2

~a5y2
0l

���� ����2

2
; ð8Þ
where ~a3; ~a4 and ~a5 are the candidates of coefficients of second-order terms on the cell Ki.
After looping all cells in the computational domain, each cell K has several candidates for second-order information. All

these candidates are combined to give the final second-order information in K with the WENO procedure. For example, as-
sume that there are candidates ~a3;j; ~a4;j and ~a5;j; j ¼ 1; . . . ;m, in the cell K. First, the smoothness indicator is introduced [16]
for each candidate
Sq;j ¼
Z
K
jKjð~a2

3;j þ ~a2
4;j þ ~a2

5;jÞdX; ð9Þ
where jKj is the area of the cell K. Then the weight of each candidate is given as
xj ¼
~xjP
i
~xi
; ~xi ¼

1
ð�þ Sq;iÞl

; ð10Þ
where � ¼ 10�4 and l ¼ 1. Finally, the second-order information in the cell K is presented as
~~ai ¼
Xm

j¼1

xj~ai;j; i ¼ 3;4;5: ð11Þ
The linear information in each cell Ki is also reconstructed in a similar way. For obtaining candidates of coefficients of linear
term ~a1 and ~a2, the following minimization problem is solved
min
~a1 ;~a2

X
8Kl2PqðKÞ;i–l

a0;l � a0 � ~a1x0l � ~a2y0l �
1
2

~~a3x2
0l � ~~a4x0ly0l �

1
2

~~a5y2
0l

���� ����2

2
: ð12Þ
In the WENO procedure, the following smoothness indicator is used for the linear part
Sl;j ¼
Z
K
ð~a2

1;j þ ~a2
2;jÞdX: ð13Þ
The coefficients of linear term in each cell is determined with the same way to the quadratic case
~~ai ¼
Xm

j¼1

xj~ai;j; i ¼ 1;2; ð14Þ
where xj depends on Sl;j.
Finally, the approximate polynomial in the cell K after the limiting strategy is
hqðx; yÞ ¼ a0 þ ~~a1ðx� x0Þ þ ~~a2ðy� y0Þ þ
1
2

~~a3ðx� x0Þ2 þ ~~a4ðx� x0Þðy� y0Þ þ
1
2

~~a5ðy� y0Þ
2
: ð15Þ
The convergence of the WENO hierarchical limiting strategy is studied by using the smooth function f ¼ sinðpxÞ cosð2pyÞ
on the domain [0,1] � [0,1]. The mesh used is generated by EasyMesh [33]. Table 1 gives L2 errors on six successively refined
meshes, and the expected convergence order is observed.
and convergence order of quadratic reconstruction with hierarchical limiting strategy.

f cells L2 error Order

4.99e�02
9.36e�03 2.4
1.34e�03 2.8
1.69e�04 3.0

84 2.11e�05 3.0
36 2.65e�06 3.0
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5. Newton-iteration

We use Newton-iteration to linearize the nonlinear system (5):
X
eij2@Ki

Z
eij

FðnÞ � nijdlþ
X

eij2@Ki

Z
eij

@FðnÞ

@Ui
dUðnÞi

 !
� nijdlþ

X
eij2@Ki

Z
eij

@FðnÞ

@Uj
dUðnÞj

 !
� nijdl ¼ 0; ð16Þ
where FðnÞ ¼ FðUðnÞi ;UðnÞj Þ. The Ui is updated by
Uðnþ1Þ
i ¼ UðnÞi þ sidUðnÞi ; ð17Þ
where si is a relaxation parameter on Ki.
The calculation of the derivatives of the numerical flux to the conservative variables @F=@Uj has been discussed exten-

sively in the references. Often the derivatives are obtained by using chain rule, which may lead to long and tedious formulas.
It is in general difficult to get the exact expression of these derivatives, especially when the boundary condition is evolved.
Even these approximated derivatives are often very complex, which gives rise to serious difficulties in the implementation.
As an alternative, we approximate the derivatives using numerical differentiation, which makes the algorithm converge suc-
cessfully. The Jacobians are based on the data at the Gauss points on the boundary of each cell. First, the piecewise polyno-
mial is reconstructed on each cell, then we can obtain the left and right states of conserved variables on each edge, and so the
numerical flux of this edge. Finally, the numerical differentiation @F=@U can be obtained by perturbing the left or right states
of conserved variables a little bit. We use the following forms to approximate @F=@Ui and @F=@Uj, say, the element in the
Jacobian matrix is approximated as:
@Fl

@Ui;k
�

FlðUðnÞi;k þ edUðnÞi;k ;U
ðnÞ
j;k Þ � FlðUðnÞi;k ;U

ðnÞ
j;k Þ

jedUðnÞi;k j
;

@Fl

@Uj;k
�

FlðUðnÞi;k ;U
ðnÞ
j;k þ edUðnÞj;k Þ � FlðUðnÞi;k ;U

ðnÞ
j;k Þ

jedUðnÞj;k j
;

where @Fl
@Ui;k

means the derivative of the lth element of vector F respect to the kth element of vector Ui, and e is chosen as 10�6

in our implementation which is about half-word length of the machine epsilon.
Without the time evolving term, (16) is in fact a singular system. We propose to regularize it using the local residual [24]:
akRðnÞi kl1 dUðnÞi þ
X

eij2Ki

Z
eij

@FðnÞ

@Ui
dUðnÞi

 !
� nijdlþ

X
eij2Ki

Z
eij

@FðnÞ

@Uj
dUðnÞj

 !
� nijdl ¼ �RðnÞi ; ð18Þ
where a is a positive constant and
RðnÞi :¼
X

eij2Ki

Z
eij

FðnÞ � nijdl: ð19Þ
The flow chart of the Newton-iteration algorithm is given below.
Algorithm 1. Newton-iteration
1. Let Uð0Þ be initial value, and let n ¼ 0;
2. Solve linear system (18) to get dUðnÞ;
3. Update Uðnþ1Þ

i by using Uðnþ1Þ
i ¼ UðnÞi þ sidUðnÞi in every cell;

4. Reconstruct Uðnþ1Þ on each cell using the method in Sections 3 and 4;
5. Check if the residual Rðnþ1Þ is small enough: if yes, stop; otherwise, set n ¼ nþ 1 and go to step 2.
6. The geometric multigrid solver

In step 2 of Algorithm 1, we use the geometric multigrid method to solve the linear system. There are two main compo-
nents of the multigrid method: projection operator and smoother. For constructing project operator, we need to build the so-
called element patches. First, the seed cells are chosen by using the following principles: any two seed cells have no common
vertexes or sides; and according to [6], it is advised that each element patch contains at least four (for 2D) cells. In the imple-
mentation, we sort the cells around the seed cell according to the numbers of adjoining sides in descending order, and choose
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Fig. 2. Element patches near the airfoil body of NACA 0012 generated by the aggregation from a quasi-uniform mesh. It shows the element patches on four
continuous levels.
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the first three cells as the elements of the patch. Note that if we implement strictly with the principles above, there may be
some single cells left. We eliminate such cells by merging it to the ’nearest’ patch (i.e., the patch which has the most common
sides with the cell). Fig. 2 shows the element patches generated on four continuous levels.

We denote the original partition on �X as T 0 ¼ T . The aggregated multigrid method will give a sequence of meshes de-
noted as T m; m ¼ 1;2; . . . For every cell Ki;mþ1 2 T mþ1, it is a union of some cells in mesh T m:
Ki;mþ1 ¼ \j2Iði;mþ1ÞT j;m; ð20Þ
where Iði;mþ 1Þ is the set of indices for cells in T m as a part of cell Ki;mþ1.
The projected linear system on mesh level mþ 1 from level m is given as
X

j

Aij;mþ1dUi;mþ1 ¼ �Ri;mþ1; ð21Þ
where
Aij;mþ1 ¼
X

n2Iði;mþ1Þ

X
g2Iðj;mþ1Þ

Ang;m; ð22Þ

Ri;mþ1 ¼
X

j2Iði;mþ1Þ
ðRj;m þ

X
n

Ajn;mdUn;mÞ: ð23Þ
As the corrections obtained from the mesh level mþ 1; dUi;mþ1 is added back to the solution on the mesh level m as
dUj;m ! dUj;m þ dUi;mþ1; if j 2 Iði;mþ 1Þ: ð24Þ
We choose block LU-SGS method proposed by Chen and Wang [9] as our smoother, which can be formulated as two sym-
metric loops:

1. For Ki;m 2 T m, loop for i increasingly
dUi;m :¼ A�1
ii;m Ri;m �

X
i–j

Aij;mdUj;m

 !
: ð25Þ
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2. For Ki;m 2 T m, loop for i decreasingly
Fig. 3.
dUi;m :¼ A�1
ii;m Ri;m �

X
i–j

Aij;mdUj;m

 !
: ð26Þ
The V-cycle type iteration is adopted in the implementation of our linear multigrid solver.

The multigrid algorithm, as the inner iterations of the complete Newton-iteration in Algorithm 1, is used for only a few
steps in each Newton-iteration. According to the numerical experiences, too many iterations in the multigrid method will
make the solver inefficient, especially when the Mach number is bigger than 0.9. For the low Mach number case, increasing
number of iterations appropriately in the multigrid method can decrease the number of iterations of the outer Newton meth-
od. In the numerical simulations, we just set the number of iterations in the multigrid to be 2, and it works very well for all
cases in the next section.

7. Numerical results

In this section, we mainly show two aspects of our algorithm. One is that with the WENO hierarchical limiting strategy;
the high-order numerical accuracy is obtained in the smooth region, while the numerical oscillations nearby the shock are
removed or reduced significantly. The other one is about robustness; our algorithm can work well for several test examples
with one fixed set of parameters.

The two aspects above are demonstrated in the following subsections. In the simulations, we always use a ¼ 2 (see (18)),
si ¼ s ¼ 0:2 (see (17)), l ¼ 1:0 (see (10)), and the smoothing steps in the multigrid solver is 2.

All the computations are carried out on IBM ThinkPad T60 type Notebook with core speed to be 1.83 GHz. The code is
based on the Adaptive Finite Element Package (AFEPack) developed by Li and Liu [23].

In all numerical experiments in this section, the following quantities are used as the initial guess of the Newton-iteration:
the density q ¼ 1:0, the velocity V ¼ ðu;vÞ ¼ ðcos h; sin hÞ; where h is the attack angle. The other quantities such as pressure p
and energy e are determined by q;V together with the Mach number.

7.1. Numerical convergence

Example 7.1. The test problem is the two-dimensional steady-state, subsonic flow around a disk at Mach number
M1 ¼ 0:38 [4].

The computations have been performed on four successively refined grids, i.e. 16 � 12, 32 � 24, 64 � 48, 128 � 96 points.
Fig. 3 shows the initial mesh of the whole domain and the detail mesh around the inner circle. The grids extend about 20
diameters away from the circle.

From the quality of numerical solution by the symmetry of Mach number contours around the circle in the flow field
shown in Figs. 4 and 5, we can see that numerical results obtained with quadratic reconstruction are much more accurate
than those with the piecewise linear reconstruction. By using the entropy production as a criterion to measure the accuracy
Mesh used in the simulation of subsonic flow around a disk. The left one is the whole mesh, the right one is the detail of mesh around the inner disk.



Fig. 4. The mesh details around the circle (top), Mach isolines with linear reconstruction (middle) and with quadratic reconstruction (bottom). Left column
is with 16 � 12 grid and right is with 32 � 24.

G. Hu et al. / Journal of Computational Physics 229 (2010) 1681–1697 1689
and quality of the numerical solution, the convergence of numerical methods is also studied, and the results are shown in
Table 2. As expected, the quality of the numerical solutions is improved when meshes are refined, and the order of conver-
gence for the quadratic case is consistent with the theoretical one. Besides the results obtained with the WENO hierarchical
limiting strategy, the results without using limiting procedure are also listed in Table 2. It can be observed that with the lim-
iting procedure, both the numerical accuracy and convergence order are affected. However, with the mesh refinement, the



Fig. 5. Same as Fig. 4, except with 64 � 48 grid (left) and 128 � 96 grid (right).

1690 G. Hu et al. / Journal of Computational Physics 229 (2010) 1681–1697
difference of the convergence orders becomes smaller. Regardless of using limiting procedure or not, the numerical accuracy
given by the quadratic reconstruction is better than that obtained with the linear reconstruction.

It is pointed out that the region used to measure the errors in Table 2 is the cirque with radius from 0.5 to 2.0, which
contains the inner boundary. As we discussed in Section 3 for the quadratic reconstruction, if the polygon is used to approx-
imate the curved boundary of computational domain, then the second-order error will be introduced from the curved



Table 2
The L2 entropy errors and orders of convergence for the linear reconstruction and quadratic reconstruction computations for the flow around a circle on four
successive grids; errors are measured in regions 0:5 6 r 6 2:0. ‘‘L-lim” and ‘‘Q-lim” stand for linear and quadratic reconstruction with limiting procedure,
respectively. ‘‘Q.” stands for quadratic reconstruction without limiting procedure.

Mesh Err. (L-lim) Order Err. (Q-lim) Order Err. (Q.) Order

16 � 12 2.50e�01 2.30e�01 1.61e�01
32 � 24 6.22e�02 2.0 5.05e�02 2.2 2.26e�02 2.8
64 � 48 1.03e�02 2.6 5.99e�03 3.1 2.52e�03 3.2
128 � 96 1.74e�03 2.6 6.33e�04 3.2 2.56e�04 3.3
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boundary, which will pollute the numerical accuracy in the whole computational domain. From Table 2, we can see that the
method used to take care of the curved boundary in this paper works very well.

Example 7.2. The test problem is a NACA 0012 airfoil in the flow field with the free-stream condition, Mach number 0.8 and
the attack angle 1.25�.

The computations have been performed on three successively refined grids (2662 cells, 10,648 cells and 42,592 cells,
respectively). Fig. 6 shows a coarse mesh with 2662 elements. The numerical results in Fig. 7 show the Mach contour lines
around the whole airfoil and nearby the shock region with three different meshes. The results are obtained by using the
WENO hierarchical limiting procedure. It is observed from Fig. 7 that the Mach contour lines become smoother and the shock
profiles become sharper when the mesh is refined.

With the help of the WENO hierarchical limiting strategy, the numerical oscillations around the shock profiles are re-
duced effectively. This can be observed from the comparison between the results shown in Figs. 7 (middle) and 8 (where
the limiting strategy is not used) that the Mach isolines obtained with the limiting procedure are much more ordered. How-
ever, it should be pointed out that the numerical oscillations are not removed thoroughly, as the slight overshoot/undershoot
phenomenon are still observed in Fig. 7. This seems not avoidable with the present hierarchical reconstruction strategy; see
Liu and co-workers [27,26,42] where overshoot/undershoot are also observed. More efforts have to be made to improve the
limiting strategy.

7.2. Robustness

We applied our algorithm to problems with different free-stream configurations and different geometric configurations.

7.2.1. On different free-stream configurations
Three free-stream configurations are tested for the airfoil NACA 0012 or RAE 2822:

Example 7.3. Low free-stream Mach number of 0.3 and a big attack angle of 3�, the airfoil is NACA 0012. Results are shown
in Fig. 9.

Example 7.4. Moderate free-stream Mach number of 0.73 and attack angle of 1�, the airfoil is RAE 2822. Results are shown in
Fig. 10.
Fig. 6. The mesh grids generated using EasyMesh around NACA 0012 airfoil, containing 2662 elements. The left one is the whole mesh, and the right one
shows the mesh near the body of the airfoil.



Fig. 7. Mach isolines around the whole airfoil (left) and around the shock profiles (right). The free-stream condition is Mach number 0.8 and attack angle
1:25� . Top: 2662 cells, middle: 10,648 cells and bottom: 42,582 cells. The results are given with the quadratic reconstruction, and the WENO hierarchical
limiting procedure is used.
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Example 7.5. High free-stream Mach number of 0.99 and attack angle of 0.0�, the airfoil is NACA0012. Results are shown in
Fig. 11.



Fig. 8. Same as Fig. 7 (middle row), expect that the limiting strategy is not used.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Pr
es

su
re

 c
oe

ffi
ci

en
t, 

C
p

Chordwise station, x/C

Fig. 9. The contours of Mach number (top left), pressure (top right), surface pressure profiles of the airfoil (bottom left), and convergence history (bottom
right) for NACA 0012 airfoil with free-stream configuration: the Mach number is 0.3 and the attack angle is 3�.
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Fig. 10. Same as Fig. 9 except with Mach number 0.73 and attack angle 1.0�, and the airfoil is RAE 2822.
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The mesh used in all the numerical tests are generated by EasyMesh. The mesh for NACA 0012 airfoil contains
2662 cells, and the mesh for RAE 2822 airfoil contains 3444 cells. From results shown in Figs. 9–11, we can see that
our algorithm works very well with the same set of parameters indicated at the beginning of this section. For all free-
stream configurations, the residual of the system reduced to the 10�10 with around 500 Newton-iteration steps.
Though there are still slight numerical oscillations which can be observed from the plot of surface pressure coeffi-
cients, the WENO hierarchical limiting strategy improved the quality of numerical solutions nearby the shock region
significantly.

7.2.2. On multi-airfoil in the flow fields
To test the robustness of the algorithm, we also present the following example which has two airfoils in the flow field.

Example 7.6. One NACA 0012 airfoil and one RAE 2822 airfoil in the flow field with Mach number 0.73 and the attack angle
1.0�.

Fig. 12 presents the numerical solutions of Example 7.6. It can be seen from the figure that our algorithm works success-
fully. It is also observed from the convergence history that the residual for this case can achieve the machine accuracy with
almost the same number of iterations as that of the single airfoil case (see Fig. 10).

We emphasize again that one of the advantages of our proposed scheme is insensitive to the parameters used in the com-
putations: a ¼ 2 (see (18)), si ¼ s ¼ 0:2 (see (17)), l ¼ 0:2 in the WENO procedure, and the smoothing steps in the multigrid
solver is 2. This is in contrast with many existing algorithms where quite a number of parameters have to be fixed case by
case.

Of course, by adjusting the parameters used, the efficiency can be further improved. For example, for simulations shown
in Figs. 9 and 11, if the value s ¼ si ¼ 0:6 is used, the iteration steps can reduced significantly compared with that using
s ¼ si ¼ 0:2, see Fig. 13.
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Fig. 11. Same as Fig. 9 except with Mach number 0.99 and attack angle 0.0�.
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8. Conclusion remarks

In this work, we developed a high-order and robust algorithm for steady two-dimensional Euler equations on unstruc-
tured grids, which uses the Newton-iteration and the multigrid method to solve the linearized Jacobian matrix. The block
LU-SGS iteration was adopted as the smoother of the multigrid algorithm. The WENO hierarchical limiting strategy was pre-
sented, which can reduce the numerical oscillations significantly and can also keep the high numerical accuracy generated
by the quadratic reconstruction. The local Jacobian matrix of the numerical fluxes were computed using the numerical dif-
ferentiation, which can simplify the implementation significantly. Apart from the high-order accuracy, the numerical exam-
ples also demonstrated the robustness of our algorithm: one set of the four parameters (i.e., the proportional constant a for
the local residual, the relaxation parameter s in the Newton-iteration, the weight l in the WENO scheme, and the number of
smoothing steps in the multigrid solver) is sufficient for various geometrical configurations and free-stream configurations.
This is regarded as a strong indicator of robustness. Of course, the efficiency can be optimized by adjusting these parameters
case by case.

The WENO hierarchical limiting strategy used in this paper worked smoothly for all numerical experiments. However, the
slight undershoot/overshoot phenomenon can still be observed near the shocks. This will be further studied in future by
improving the limiting strategy.

It is important to point out that the scheme in this paper is not cheaper than traditional finite volume schemes, since the
least square interpolation used in this paper is not less expensive than traditional least square reconstruction from cell aver-
ages in a finite volume setting. This is very different from the residual distribution scheme in Chou and Shu [10] in which a
non-smooth tensor product mesh is assumed and then the interpolation is avoided. A numerical integration for the flux
along the cell boundary is directly computed based on the point values of the solution along the line of the cell boundary,
thus resulting in significant cost saving over finite volume schemes.
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Fig. 12. Same as Fig. 10 except with two airfoils in the flow filed: NACA 0012 and RAE 2822.

Fig. 13. Convergence history for NACA 0012 airfoil in the flow filed with free-stream configuration: Mach number 0.3, attack angle 3� (left), and Mach
number 0.99, attack angle 0� (right). The parameter s ¼ si ¼ 0:6 is used.
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